of percent errors in predicted K values, the sum being taken over all components.

Tables III and IV present the results of the final correlation. Average errors in predicted K values of methane, ethane, propane, toluene, and 1-methyinaphthalene range from 4.5 to 7.0%. The predicted K values of methane, ethane, and propane are generally low at low pressure and high at high pressure for each isotherm using the interaction parameters obtained in this work. The predicted K values of toluene are low at high pressures and high at low pressures. The predicted K values of 1-methyinaphthalene show somewhat larger errors, as expected, and no consistent error trends.

Conclusion

Equillbrium liquid and vapor compositions and K values have been obtained in a five-component light hydrocarbon-aromatic solvent system. The data of this work have been represented by the Soave equation of state. The correlating parameters should be of use in the prediction of phase behavior in systems containing light hydrocarbons in aromatic solvents.

Glossary

$a, b \quad$ parameters in Soave equation of state
C interaction parameter
$K_{l} \quad$ phase equilibrium ratio for component $i, y_{i} / x_{i}$
x liquid mole fraction
$y \quad$ vapor mole fraction
$z \quad$ mole fraction
ϵ

Subscripts

i, j	components in a mixture
m	mixture property

Lherature Ched

(1) Wiser, W. H.; Anderson, L. L.; Oader, S. A.; Hill, G. R. J. Appl. Chem. Blotechnol. 1071, 21, 82.
(2) Karr, C., Jr.; Abel, W. T.; Comberlati, J. R. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chom. 1876, 21, 207.
(3) Campbell, J. H.; Stephens, D. R. Prepr. Pap.-Am. Chem. Soc., Div. Flel Chern. 1976, 20, 94.
(4) Dooley, J. E.; Thompson, C. J. Prepr. Pap.-Am. Chem. Soc., Dh. Fuel Chem. 1978, 21, 243.
(5) Jacoby, R. H.; Rzasa, M. J. Trans. Soc. Pet. Eng. AIME 1952, 195, 99.
(6) L., Y. H.; Dillard, K. H.; Robinson, R. L. J. Chem. Eng. Data 1981, 26, 53.
(7) Yarborough, L.; Vogel, J. L. Chem. Eng. Prog., Symp. Ser. 1967, 63, 1.
(8) Yarborough, L. J. Chem. Eng. Data 1972, 17, 129.
(9) Vatrogs, J.; Kiekers, A. J.; Edmister, W. C. AIChE J. 1871, 17, 308.
(10) Klekers, A. J. Ph.D. Thesls, Oklahoma State Unlversity, Stillwater, OK, 1976.
(11) Lin, H.-M.; Sebastian, H. M.; Simnick, J. J.; Chao, K.-C. J. Chem. Eng. Data 1979, 24, 146.
(12) Elbishlaw,' M.; Spencer, J. R. Ind. Eng. Chem. 1951, 43, 1611.
(13) Sebastian, H. M.; Strnnick, J. J.; Lin, H.-M.; Chao, K.-C. J. Chem. Eng. Data 1979, 24, 149.
(14) Soave, G. Chem. Eng. Scl. 1972, 27, 1197.
(15) Yarborough, L. Adv. Chem. Ser, 1979, No. 102, 385.

Recelved for review October 10, 1980. Accepted January 29, 1881. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Sociaty, and to the U.S. Department of Energy (E[49-18]-2278) for support of this research.

Activity Measurements in Aqueous Mixed Electrolyte Solutions. 2. Hydrochloric Acid-Choline Chloride and Hydrochloric Acld-Acetylchollne Chloride Mixtures of Constant Total Ionic Strength

P. Mahapatra and M. Sengupta*
Department of Pure Chemistry, University College of Science, Calcutta 700009, Indla

Abstract

Emf measurements have been made in cells whout liquid Junction of the type $\mathrm{Pt}, \mathrm{H}_{2}(1$ atm) $\left|\mathrm{HX}\left(m_{1}\right), \mathrm{MX}\left(\mathrm{m}_{2}\right)\right| \mathrm{Ag} \mathrm{Cl}, \mathrm{Ag}$, containing mixtures of (1) HCl and $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ and (U) HCl and $\mathrm{CH}_{2}\left(\mathrm{OOCCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ In different proportions, but at constant total lonic strength ($\mu=3,2,1,0.5,0.25,0.1$). Measurement have been carried out at $10^{\circ} \mathrm{C}$ intervals, over the temperature range $5-35^{\circ} \mathrm{C}$. The $\mathrm{Ag}-\mathrm{AgCl}$ electrodes, prepared by the thermoelectrolytic method, used in pairs for each measurement, gave results which closely agreed. The values for the standard electrode potential, E°, and the interaction coefficient, α_{12}, for each constant total lonic strength mixture at all of the four temperatures have been evaluated by the computerized least-squares method. Interpretation of the results has been made in terms of the multicomponent lonic equilbrium theory of Scatchard ("neutral electrolyte as components" treatment) and of Pitzer.

Introduction

The determination of the activity coefficient of one electrolyte in the presence of another has evoked interest for a fallif long
time. The specific lonic interaction principle postulating the existence of short-range interactions among lons of unllike sign of charge was enunciated by Brönsted (1, 2) and was applied to dilute solutions by Guggenheim (3-5). Modifications were suggested for concentrated solutions by Scatchard $(6,7)$. Pitzer and Brewer (8) used the Guggenheim equations with Scatchard modifications (6) (BSG theory) to give a simple and compact summary of experimental data.
From emf measurements at constant total bonic strength, some simple empirical relationships have been discovered to hoid in both dilute and concentrated solutions (9). It has been found, for the $\mathrm{HCl}-\mathrm{MCI}$ mixture, for example, that the activity coefficient of the first component (log γ_{1}) can, in general, be expressed as

$$
\begin{equation*}
\log \gamma_{1}=\log \gamma_{1}^{0}-\alpha_{12} m_{2}-\beta_{12} m_{2}^{2} \tag{1}
\end{equation*}
$$

where $\gamma_{1}{ }^{0}$ is the activity coefficient of hydrochloric acid in its own solution (without MCI) at a molality equal to the total molalty of the solution to which γ_{1} refers. The quantities α_{12}, β_{12}, ... are functions of the total lionic strength but not of the ionic strength fraction of the second component $y_{2}\left(=m_{2} / m\right)$. In many cases the simple linear equation, the so-called Harned rule (9)

$$
\begin{equation*}
\log \gamma_{1}=\log \gamma_{1}^{0}-\alpha_{12} m_{2} \tag{2}
\end{equation*}
$$

is found to express sufficiently accurately the activity coefficient γ_{1}. For the other electrolyte, MCl , one can similarly write

$$
\begin{equation*}
\log \gamma_{2}=\log \gamma_{2}^{0}-\alpha_{21} m_{1}-\beta_{21} m_{1}^{2} \tag{3}
\end{equation*}
$$

though it does not follow, even if eq 2 holds, that $\beta_{21}=0$; this has been recognized by McKay (10) and by Harned himself (11, 12).

Scatchard $(13,14)$ has subsequently extended and elaborated the Guggenheim equations in several ways. The Brönsted principle of specific ion interaction has been abandoned, and terms are introduced for short-range interaction of ions of like signs. Further, arrays of third and fourth virlal coefficients are added, in addition to the second virlal coefficient terms (corresponding to the β quantities). Also, the Debye-Hückel term in the expression for the excess Gabbs energy (to correspond to the Debye-Hückel term in the expression for activity coefficlents) is elaborated to take into account the different distances of closest approach for the solute components. Appropriate derivatives then yield very complex formulas for the osmotic and activity coefficients. On this basis Lietzke (15) has been able to represent accurately the osmotic coefficients of a number of pure electrolytes; also, several systems of mixed electrolytes have been treated. The earlier (13) "neutral electrolyte molecules as components" treatment of Scatchard was subsequently (14) developed into the "ions as components" treatment. Equations for the excess free energy, the osmotic coefficient, and the activity coefficients were derived and were applied to the reciprocal salt system $\mathrm{Na}-\mathrm{Mg}-$ $\mathrm{Cl}-\mathrm{SO}_{4}$. The ion-component treatment was found to provlde a better estimate of the osmotic and activity coefficlents when only data on the two-ion (single-salt) systems are available and to provide a means of calculating values for the four-ion (non-common-ion) systems using only parameters derived from the three-ion data.

Rush and Johnson (16) have used the equations of Scatchard (13) (neutral electrolytes as components) for caiculating the activity coefficients of solutes from isopiestic data of mixed electrolyte solutions. Their method can be adapted to the caiculation of activity coefficients of the second solute, if activity coefficients of the first solute are available. Their expression for the activity coefficient of solute A in mixed solutions with B is (17)

$$
\begin{array}{r}
\log \gamma_{A}=\log \gamma_{A}^{0}+\left[I_{A} /\left(2.3026 \nu_{A} m_{A}\right)\right]\left[\left(\alpha_{B}-\alpha_{A}\right) y_{B}+\right. \\
\beta_{A B}^{(0)} y_{B}+\left(B_{A B}^{(0)}-\beta_{A B}^{(0)}\right) y_{B}^{2}+\beta_{A B}^{(1)} y_{B}+3\left(B_{A B}^{(1)}-\right. \\
\left.\left.\beta_{A B}{ }^{(1)}\right) y_{B}^{2}-2\left(2 B_{A B}^{(1)}-\beta_{A B}{ }^{(1)}\right) y_{B}{ }^{3}\right] \tag{4}
\end{array}
$$

where

$$
\begin{gather*}
B_{A B}^{(0)}=b_{A B}^{(0,1)} I+1 / 2 b_{A B}^{(0,2)} I^{2}+1 / 3 b_{A B}^{(0,3)} I^{3} \\
B_{A B}^{(1)}=1 / 2 b_{A B}^{(1,2)} I^{2}+1 / 3 b_{A B}^{(1,3)} I^{3} \\
\beta_{A B}^{(0)}=b_{A B}^{(0,1)} I+b_{A B}^{(0,2)} I^{2}+b_{A B}^{(0,3)} I^{3} \\
\beta_{A B}^{(1)}=b_{A B}^{(1,2)} I^{2}+b_{A B}^{(1,3)} I^{3} \tag{5}\\
\alpha_{J}=\left(\nu_{J} m_{J} / I_{J}\right)\left(\phi_{J}-1\right) \tag{6}
\end{gather*}
$$

In these equations ν_{j} is the number of moles of ions per mole of component J, and ϕ_{J} is the osmotic coefficlent of a solution of pure J at the total ionic strength of the mixture. The analogous expression for the activity coefficient of component B in mixed solutions with A can be obtained from eq 4 by replacing the A subscripts by B and changing the sign of the terms in $\beta_{A B}{ }^{(1)}$ and $B_{A B}{ }^{(1)}$, i.e.

$$
\begin{array}{r}
\log \gamma_{B}=\log \gamma_{B}^{0}+\left[I_{B} /\left(2.3026 \nu_{B} m_{B}\right)\right]\left[\left(\alpha_{A}-\alpha_{B}\right) y_{A}+\right. \\
\beta_{A B}{ }^{(0)} y_{A}+\left(B_{A B}{ }^{(0)}-\beta_{A B}^{(0)}\right) y_{A}^{2}-\beta_{A B}{ }^{(1)} y_{A}-3\left(B_{A B}{ }^{(1)}-\right. \\
\left.\left.\beta_{A B}{ }^{(1)}\right) y_{A}{ }^{2}+2\left(2 B_{A B}{ }^{(1)}-\beta_{A B}{ }^{(1)}\right) y_{A}{ }^{3}\right] \tag{7}
\end{array}
$$

Identical $b_{\text {AB }}$ parameters apply to each expression.
More recently, Pitzer (18) has worked out the idea that the properties of electrolyte solutions can be expressed by an "electrostatic" term (which may be an improved version of the Debye-Hückel term) plus a virial coefficlent serles in which the coefficients may be functions of the lonic strength of the solution. Development is then made, in a general form, of a system of equations for the thermodynamic properties of pure as well as mixed electrolytes. The observed osmotic coefficlents of a large number of pure electrolytes of different valence types have been fitted by using a three-parameter ($\beta^{(0)}$ and $\beta^{(1)}$, both corresponding to the second virlal coefficlent, and C^{ϕ}, corresponding to the third) equation. Also, a large number of binary electrolyte mixtures have been handled with a two-parameter equation.

For a mixture of two $1: 1$ electrolytes $M X$ and $N X$, at a total molallity m, Pltzer's equation (eq 41, ref 18) is

$$
\begin{align*}
& \text { In } \gamma_{M X}= \\
& f^{\gamma}+m\left[B_{M X^{\gamma}}+y_{2}\left(B_{N X}{ }^{\phi}-B_{M X}^{\phi}+\theta_{M N}\right)+y_{1} y_{2} m \theta_{M N}^{\prime}\right]+ \\
& m^{2}\left[C_{M X} \gamma+y_{2}\left(C_{N X}{ }^{\phi}-C_{M X}{ }^{\phi}+1 / 2 \psi_{M N X}\right)+1 / 2 y_{1} y_{2} \psi_{M N X}\right] \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
B=\beta^{(0)}+\beta^{(1)} \exp \left(-2 m^{1 / 2}\right) \tag{9}
\end{equation*}
$$

In eq 8 , the quantitites $\theta_{\text {MN }}$ and $\psi_{M N X}$ arise in the case of mixtures only in contrast to the B and C terms, which can be determined from the activity (γ) or osmotic (ϕ) propertles of pure MX and NX solutions, and are respectively the measures of binary and ternary interactions between the ions indlcated by the suffixes. Pitzer has indicated that the concentration dependence of θ is generally very small, and hence $\theta_{\text {MN }}^{\prime}$ ($=$ $\partial \theta_{\text {MN }} / \partial m$) can be neglected. Further, when one makes use of the expression derived from eq 8 for the actlvity coefficient in solutions containing the first component only, viz., in $\gamma_{M x}{ }^{0}=f^{\gamma}$ $+m B_{M X}{ }^{\gamma}+m^{2} C_{M X}{ }^{\gamma}$, and eq 9 , eq 8 changes to

$$
\begin{aligned}
& \text { In } \gamma_{M X}=\ln \gamma_{M X}{ }^{0}+m_{2}\left[\left\{\left(\beta_{N X}{ }^{(0)}-\beta_{M X}{ }^{(0)}\right)+\right.\right. \\
& \left.\left(\beta_{N X}{ }^{(1)}-\beta_{M X}{ }^{(1)}\right) \exp \left(-2 m^{1 / 2}\right)+\theta_{M N N}\right\}+m\left(C_{N X}{ }^{\phi}-C_{M X}{ }^{\phi}\right)+ \\
& \left.1 / 2\left(m+m_{1}\right) \psi_{M N X}\right](10)
\end{aligned}
$$

Scope of the Present Work

In an earlier paper (19) the results from emf studies in cells without liquid junction containing mixed electrolyte solutions of hydrochloric acid and quaternary ammonium chlorldes at four different temperatures have been reported. The experimental results, which showed that the Harned rule is obeyed by the activity-coefficient values of the acid component in the different mixtures, were interpreted in terms of the Pitzer theory.

The choline and acetylcholine lons, which are structurally very similar to the tetramethylammonium ion, are of blochemical interest from the standpoint of carbohydrate and Ilpid metabolism. They have achieved considerable importance in recent years due to their property of producing a marked vasodilation and also because it has been shown that they are normally present in the serous coat of the intestine and probably are the normal peristaltic hormones. The acetyl derivative is especially interesting since it has been found that it possesses a depressor effect 10^{5} times as great as that produced by choline itsehf, and yet it is only 3 times as toxic as this substance. Moreover, acetyicholine is of great importance physlologically as the neurohormone of the parasympathetic nervous system and produces a lowering of the blood pressure.

Boyd, Schwarz, and Lindenbaum (20) have made isoplestic studies of choline chloride solutions and determined its osmoticand activity-coefficient values. These have been utilized subsequently for calculating the Pitzer coefficients $\beta^{(0)}, \beta^{(1)}$, and C^{ϕ} for this compound. Baum (21) has used cation-sensitive electrodes for the study of choline chloride and acetylcholine chloride solutions. Very recently, Bates et al. (22) have also made further isoplestic measurements in choline chloride solutions up to high molalliles, and the derived activity-coefficlent values have been compared with those obtained directly from emf measurements on cells without liquid junction, using a choline ion electrode. With such an amount of precise information available regarding the thermodynamic property of activity coefficients of choline chloride and acetylcholine chloride solutions, it is very tempting to investigate the properties of these two electrolytes in binary mixed solutions with hydrochloric acid and to see how far the Pitzer theory, or the alternatively available Scatchard-Rush-Johnson theory, is successful in interpreting the results.
Further, data regarding the temperature varlation of the interaction coefficient α_{12} (and β_{12}) are meager and not well interpreted even for the few mixed systems for which they are available. It therefore appeared worthwhile to secure accurate experimental data regarding the temperature varlation of the ionic interaction coefficient for the mixed systems (i) HCl $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ and (ii) $\mathrm{HCl}-\mathrm{CH}_{2}\left(\mathrm{OOCCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$.

Experimental Section

Hydrochloric acid (AR), diluted to the azeotropic composition, was distilled, and only the middle fraction was retained for use. Both choline chloride (E. Merck, pro analysi) and acetylcholine chloride (E. Merck) were dissolved in absolute alcohol and then precipitated by dry ether (23,24). The fine white crystals were filtered, washed with ether, and dried under vacuum. Stock solutions of the electrolytes $\left(\mathrm{HCl}, 4.0243 \mathrm{M} ; \mathrm{CH}_{2}\left(\mathrm{OH}_{2}\right) \mathrm{CH}_{2} \mathrm{~N}(\mathrm{C}-\right.$ $\left.\mathrm{H}_{3}\right)_{3} \mathrm{Cl}, 3.5202 \mathrm{M} ; \mathrm{CH}_{2}\left(\mathrm{OOCCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}, 4.6167 \mathrm{M}\right) \text { were }}$ prepared, and their molallites determined by gravimetric chloride analysis. Triplicate analyses agreed within 0.01% for hydrochloric acid and acetylcholine chloride and within $\sim 0.1 \%$ for choline chloride. No further characterization of the purty of the salts was made.

Five different $\mathrm{HCl}-\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl} \text { mixtures in molal }}$ ratios 1:9, 3:7, 1:1, 7:3, and 9:1 having total ionic strength μ $=3.0 \mathrm{M}$ were prepared by direct weighing from the stock solutions of known molality. The lower total ionic strength mixtures ($\mu=2,1,0.5,0.25$, and 0.1) were prepared by welght dilution from the highest ionic strength mixture $(\mu=3.0)$. The same procedure was followed for the HCl -acetylcholine chioride.

The cell and electrode design have been described earller (19). Ag-AgCl electrodes prepared in batches of six to eight by the thermoelectrolytic method (25), washed thoroughly, and then aged in 0.05 N hydrochloric acid for 3-4 days were tested with respect to an aged reference electrode; only those were retained for use for which the blas potentials were $\leq 0.05 \mathrm{mV}$.

Electrolytic hydrogen gas was freed from any oxygen and then washed by bubbling through distilled water. The gas stream was divided into four parts to feed each of the four electrode vessels (containing dupllcate sets of each of two different mixture compositions) in any particular run; the flow in each could be conveniently controlled. Neither the "barometric pressure correction" nor the "correction for the depth of the gas iniet beiow the level of the solution in the electrode vessel" was applied, because both were estimated to be small (ca. a few hundredths of a millivolt) compared to the accuracy and reproduclbility level of the emf measurements attained. The disturbing effect due to the appearance of a whitish grey deposit of silver on the platinized platinum elec-

Table 1. Experimental Emf Data for the Cell $\mathrm{Pt}, \mathrm{H}_{2}(1$ atm) $\left|\mathrm{HCl}\left(m_{1}\right), \mathrm{CH}_{2}\left(\mathrm{OH}^{2}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right), \mathrm{Cl}\left(m_{2}\right)\right| \mathrm{AgCl}, \mathrm{Ag}$ for Various Values of m_{1} and m_{2} at Six Different Constant Total Molalities ($m=m_{1}+m_{2}$) and at Four Different Temperatures

param- eters	m_{1}	m_{2}	$\overline{5}{ }^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$

$m=3.0 \pm 0.001 \mathrm{~mol} \mathrm{~kg}^{-1}$						
	2.6990	0.3020	0.17186	0.16592	0.15940	0.15256
	2.1520	0.8495	0.18845	0.18239	0.17585	0.16870
	1.5019	1.4993	0.20942	0.20349	0.19630	0.18917
γ°			1.427	1.373	1.316	1.256
E°, V			0.23324	0.22789	0.22196	0.21507
$\sigma(B), \mathrm{v}$			0.00019	0.00015	0.00030	0.00024
α_{12}			0.1778	0.1680	0.1540	0.1436
$\sigma\left(\alpha_{12}\right)$			0.0030	0.0023	0.0045	0.0034
$m=2.0 \pm 0.001 \mathrm{~mol} \mathrm{~kg}^{-1}$						
	1.7986	0.2013	0.20428	0.19801	0.19194	0.18526
	1.4246	0.5775	0.21677	0.21131	0.20528	0.19803
	1.0015	0.9997	0.23263	0.22730	0.22157	
	0.6226	1.3971	0.25103	0.24614	0.24064	0.23441
			1.068	1.039	1.009	0.9755
$E^{b}, \mathrm{~V}$			0.23489	0.22862	0.22226	0.21466
$\sigma(B), \mathrm{V}$			0.00027	0.00042	0.00042	0.00012
α_{12}			0.1560	0.1530	0.1455	0.1372
$\boldsymbol{\sigma}\left(\alpha_{12}\right)$			0.0058	0.0105	0.0099	0.0029

$m=1.0 \pm 0.001 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{llllllll}0.8995 & 0.1007 & 0.24685 & 0.24255 & 0.23760 & 0.23182\end{array}$ $\begin{array}{llllllll}0.5007 & 0.4998 & 0.268 & 00 & 0.26389 & 0.25931 & 0.25370\end{array}$ $\begin{array}{lllllll}0.3018 & 0.6997 & 0.28350 & 0.27980 & 0.27539 & 0.270 & 25\end{array}$ $\begin{array}{lllllll}0.1181 & 0.8803 & 0.309 & 24 & 0.30623 & 0.30257 & 0.29775\end{array}$

γ°			0.8363	0.8229	0.8090	0.7942
E°, V			0.23400	0.22853	0.22237	0.21528
$\sigma(B), \mathrm{V}$			0.00005	0.00003	0.00007	0.00009
$\alpha_{12}$$\sigma\left(\alpha_{12}\right)$			0.1592	0.1487	0.1384	0.1267
			0.0012	0.0004	0.0015	0.0027
	$m=0.5 \pm 0.004 \mathrm{~mol} \mathrm{~kg}^{-1}$					
	0.4488	0.0502	0.28265	0.27935	0.27537	0.27046
	0.3438	0.1477	0.29135	0.28814	0.28419	0.27955
	0.2507	0.2503	0.30123	0.29750	0.29388	0.28944
	0.1513	0.3509	0.31488	0.31235	0.30910	0.30499
	0.0591	0.4406	0.33867	0.33681	0.33427	0.33090
			0.7730	0.7658	0.7571	0.7477
E°, V			0.23388	0.22824	0.22191	0.21465
$\sigma(B), \mathrm{V}$			0.00031	0.00022	0.00021	0.00022
α_{12}			0.1729	0.1611	0.1504	0.1406
$\sigma\left(\alpha_{12}\right)$			0.0286	0.0145	0.0102	0.0135

| 0.2241 | 0.0251 | 0.31610 | 0.31381 | 0.31088 | 0.307 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.1724 & 0.0741 & 0.32361 & 0.32150 & 0.31867 & 0.31490\end{array}$ $\begin{array}{lllllll}0.1269 & 0.1267 & 0.33146 & 0.32959 & 0.32695 & 0.32356\end{array}$ $\begin{array}{lllllll}0.0753 & 0.1745 & 0.34505 & 0.34357 & 0.34144 & 0.33851 \\ 0.3295 & 0.3196 & 0.36794 & 0.36732 & 0.36585 & 0.36351\end{array}$ $\begin{array}{lllllll}0.0295 & 0.2196 & 0.36794 & 0.36732 & 0.36585 & 0.36351\end{array}$

$\gamma_{b}{ }^{\circ}, \mathrm{V}$	0.7701	0.7654	0.7598	0.7529
$E^{2}, \overrightarrow{2}$	0.23428	0.22875	0.22250	0.21528
$\sigma(B), \mathrm{V}$	0.00018	0.0016	0.00017	0.00018
α_{12}	0.1485	0.1390	0.1242	0.1108

$\sigma\left(\alpha_{12}\right)$	0.0315	0.0280	0.0227	0.0128

$m=0.1 \pm 0.0005 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{llllllll}0.0901 & 0.0101 & 0.35708 & 0.35621 & 0.35460 & 0.35205\end{array}$ $\begin{array}{lllllll}0.0495 & 0.0494 & 0.37261 & 0.37216 & 0.37102 & 0.368 & 81\end{array}$ $\begin{array}{lllllll}0.0303 & 0.0703 & 0.38450 & 0.38455 & 0.38390 & 0.38204\end{array}$ $\begin{array}{lllllll}0.0118 & 0.0882 & 0.40777 & 0.40852 & 0.40851 & 0.40762\end{array}$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| γ° | 0.8023 | 0.8000 | 0.7964 | 0.7918 |
| $E^{b}, \mathrm{~V}$ | 0.23345 | 0.22801 | 0.22175 | 0.21442 |
| $\sigma(B), \mathrm{V}$ | 0.00014 | 0.00010 | 0.00007 | 0.00009 |
| α_{12} | 0.2232 | 0.2047 | 0.1867 | 0.1660 |
| $\sigma\left(\alpha_{12}\right)$ | 0.0251 | 0.0184 | 0.0203 | 0.0113 |

trodes soon after the start of the experiment, particularly in the highest total molality mixtures, leading to erratic functioning of the electrode, was less here than during the earlier measurements (19) and was further reduced as before through adoption of the modified cell design wlth two connecting bridges between the two limbs.

Table II. Experimental Emf Data for the Cell $\mathrm{Pt}, \mathrm{H}_{2}(1$ atm) $\left|\mathrm{HCl}\left(m_{1}\right), \mathrm{CH}_{2}\left(\mathrm{OCOCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}\left(m_{2}\right)\right| \mathrm{AgCl}, \mathrm{Ag}$ for Various Values of m_{1} and m_{2} at Six Different Constant Total Molalities ($m=m_{1}+m_{2}$) and Four Different Temperatures

param- eters	m_{1}	m_{2}	$E, \mathrm{~V}$				
	$5^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$			

	$m=3.0 \pm 0.002 \mathrm{~mol} \mathrm{~kg}^{-1}$					
	2.6974	0.2998	0.17145	0.16535	0.15864	0.15101
	2.1012	0.9005	0.18640	0.18031	0.17357	0.16634
	1.4987	1.5021	0.20370	0.19706	0.19036	0.18297
$\gamma_{1}{ }^{\circ}$			1.427	1.373	1.316	1.256
$E^{b}, \mathrm{~V}$			0.23403	0.22880	0.22238	0.21472
$\sigma(B), \mathrm{V}$			0.00005	0.00010	0.00010	0.00025
α_{12}			0.1369	0.1245	0.1169	0.1113
$\sigma\left(\alpha_{12}\right)$			0.0008	0.0014	0.0014	0.0033

$m=2.0 \pm 0.005 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{llllllll}1.7942 & 0.1994 & 0.20300 & 0.19749 & 0.19146 & 0.18456\end{array}$
$\begin{array}{llllllll}1.3994 & 0.5997 & 0.21434 & 0.209 & 03 & 0.20306 & 0.19651\end{array}$
$\begin{array}{llllllll}0.5975 & 1.3961 & 0.24596 & 0.24106 & 0.235 & 59 & 0.229 & 29\end{array}$

γ°	1.068	1.039	1.009	0.9755
E°, V	0.23393	0.22836	0.22205	0.21465
$\sigma(B), \mathrm{V}$	0.00008	0.00003	0.00005	0.00007
α_{12}	0.1260	0.1191	0.1124	0.1060
$\sigma\left(\alpha_{12}\right)$	0.0021	0.0009	0.0011	0.0017

$\left(\alpha_{12}\right)$
$m=1.0 \pm 0.002 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{lllllll}0.9999 & 0.0 & 0.24245 & 0.23798 & 0.23284 & 0.22690\end{array}$
$\begin{array}{lllllll}0.8988 & 0.0999 & 0.24644 & 0.24204 & 0.23695 & 0.23098\end{array}$
$\begin{array}{llllllll}0.6999 & 0.3000 & 0.25515 & 0.25091 & 0.24599 & 0.23995\end{array}$
$\begin{array}{lllllll}0.4994 & 0.5005 & 0.26595 & 0.26181 & 0.25710 & 0.25159\end{array}$
$\begin{array}{llllllll}0.2987 & 0.6980 & 0.28093 & 0.27720 & 0.27275 & 0.26751\end{array}$
$\begin{array}{lllllll}0.0998 & 0.9037 & 0.31008 & 0.30720 & 0.30375 & 0.29884\end{array}$

γ_{δ}°	0.8363	0.8229	0.8090	0.7942
E°, V	0.23391	0.22835	0.22200	0.21472
$\sigma(B), \mathrm{V}$	0.00003	0.00005	0.00007	0.00011
α_{12}	0.1238	0.1155	0.1084	0.0983
$\sigma\left(\alpha_{12}\right)$	0.0014	0.0019	0.0019	0.0017

$\sigma\left(\alpha_{12}\right)$
$m=0.5 \pm 0.004 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{lllllll}0.4999 & 0.0 & 0.27904 & 0.27563 & 0.27154 & 0.26674\end{array}$
$\begin{array}{lllllll}0.4494 & 0.0499 & 0.28243 & 0.27907 & 0.27502 & 0.27009\end{array}$
$\begin{array}{lllllll}0.3501 & 0.1500 & 0.28964 & 0.28644 & 0.28253 & 0.27787\end{array}$
$\begin{array}{lllllll}0.2488 & 0.2493 & 0.29936 & 0.29629 & 0.29264 & 0.28825\end{array}$
$\begin{array}{lllllll}0.0500 & 0.4524 & 0.34052 & 0.33889 & 0.33650 & 0.33340\end{array}$ $\begin{array}{lllll}\gamma^{\circ}{ }^{\circ} & 0.7730 & 0.7658 & 0.7571 & 0.7477 \\ E^{\prime}, \mathrm{V} & 0.23354 & 0.22799 & 0.22165 & 0.21442 \\ \sigma(B), \mathrm{V} & 0.00006 & 0.00005 & 0.00006 & 0.00004 \\ \alpha_{12} & 0.1253 & 0.1166 & 0.1076 & 0.1005\end{array}$
$\begin{array}{llllll}\sigma\left(\alpha_{12}\right) & 0.0071 & 0.0076 & 0.0071 & 0.0025\end{array}$
$m=0.25 \pm 0.0005 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\begin{array}{lllllll}0.2489 & 0.0 & 0.31334 & 0.31096 & 0.30796 & 0.30401\end{array}$
$\begin{array}{lllllll}0.2247 & 0.0250 & 0.31604 & 0.31373 & 0.31082 & 0.30700\end{array}$
$\begin{array}{lllllll}0.1753 & 0.0751 & 0.32257 & 0.32038 & 0.31749 & 0.31390\end{array}$
$\begin{array}{lllllll}0.1245 & 0.1248 & 0.33135 & 0.32940 & 0.32684 & 0.32346\end{array}$
$\begin{array}{lllllll}0.0751 & 0.1755 & 0.34390 & 0.34235 & 0.34014 & 0.33710\end{array}$
$\begin{array}{llllllll}0.0248 & 0.2249 & 0.37108 & 0.37032 & 0.36905 & 0.36701\end{array}$

$\boldsymbol{\gamma}_{1}{ }^{\circ}$	0.7701	0.7654	0.7598	0.7529
$E^{,}, \mathrm{V}$	0.23426	0.22875	0.22250	0.21525
$\sigma(B), \mathrm{V}$	0.00004	0.00003	0.00005	0.00006
α_{12}	0.1002	0.0836	0.0706	0.0633

$\begin{array}{lllll}\sigma\left(\alpha_{12}\right) & 0.0035 & 0.0023 & 0.0066 & 0.0073\end{array}$

$m=0.1 \pm 0.001 \mathrm{~mol} \mathrm{~kg}^{-1}$						
0.0977	0.0	0.35491	0.35389	0.35217	0.34969	
0.0900	0.0100	0.35748	0.35660	0.35490	0.35243	
0.0699	0.0299	0.36375	0.36297	0.36148	0.35921	
0.0499	0.0501	0.37190	0.37138	0.37024	0.36822	
		0.8023	0.8000	0.7964	0.7918	
		0.23395	0.22846	0.22212	0.21494	
V		0.00003	0.00004	0.00002	0.00001	
		0.0778	0.0528	0.0502	0.0294	
			0.0105	0.0288	0.0155	

Measurements were carried out in a thermostat bath at 10 ${ }^{\circ} \mathrm{C}$ intervals, over the temperature range $5-35^{\circ} \mathrm{C}$, controlled to $\pm 0.05^{\circ} \mathrm{C}$. An LN type K2 potentiometer, in conjunction with an LN moving coll galvanometer of sensitivity $1 \mathrm{~mm} / \mathrm{m}$ at 10^{-6}

Table III. Standard Deviations of the Experimental E° Values from the Corresponding Literature Values for the Two Mixtures at the Four Different Temperatures

substituted quaternary ammonium salt	σ, mV			
	$5^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
choline chloride	± 0.54	± 0.36	± 0.38	± 0.87
acetylcholine chloride	± 0.22	± 0.28	± 0.39	± 0.95
	E°, V			
	$5^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
lit. values	0.2340	0.2285	0.2224	0.2157

V, was used. Duplicate emf measurements were carried out for each of the above mixtures, and the emf values from the two electrodes almost always agreed within experimental error.

Calculatlons

Table I gives the experimental results for the emf of the cell containing mixtures of $\mathrm{HCl}\left(m_{1}\right)$ and choline chloride $\left(m_{2}\right)$, at six different values of the total molality $m=m_{1}+m_{2}$, each constant total molality comprising a number of different moleratio mixtures. Data are recorded for four different temperatures in each case. If one assumes that the mean ionic ac-tivity-coefficient values of the hydrochloric acid component in the mixture obeys Harned's rule, at all of the four different temperatures, the emf of the cell is given by eq 11, where k

$$
\begin{equation*}
E+k \log m_{1}=\left(E^{\circ}-k \log m-2 k \log \gamma_{1}{ }^{\circ}\right)+2 k \alpha_{12} m_{2} \tag{11}
\end{equation*}
$$

$=(2.3026 R T) / F$ and α_{12} is the Harned coefficlent of the acid component in the mixture. Values of $\gamma_{1}{ }^{\circ}$ for pure HCl solutions of different molallites and at different temperatures were taken from the literature (9) and are included in Table I. Computerized least-squares calculations were made for calculating E° and α_{12}, together with the standard deviations $\sigma(E)$ in E, and $\sigma\left(\alpha_{12}\right)$ in α_{12}, which are also glven in Table I. Table II summarizes exactly similarly the experimental data for the HCl acetylcholine chloride system.

It is seen from Tables I and II that, over the range $\mu=$ 3.0-0.1 M (comprising six different constant total molallity mixtures), the standard deviations of the E° values at the four different temperatures investigated from the corresponding literature values (26) are as given in Table III. When one considers the wide range of variation of the total mixture molallity, and the modest range of temperature varlation involved, this result may be considered satisfactory. We have used in our further calculations the specific E° value determined for each electrode, for each set, in the manner shown above, at all of the four different working temperatures (rather than the Ilterature E° values at these temperatures), for the same reason (26) as mentioned earlier (19).

Discussion

The standard deviation in E as found by the computerized least-squares analysis is generally less than (i) 0.1 mV for acetylcholine chloride, except for the 3.0 M mixture at $35^{\circ} \mathrm{C}$, and (ii) 0.3 mV for choline chloride, except for the 2.0 M mixtures at 15 and $25^{\circ} \mathrm{C}$ only, where it is 0.4 mV . Thus, it can be concluded that the Harned rule holds for the HCl component in both the HCl -choline chloride and HCl -acetylcholine chloride mixtures, over the temperature range studied, at least within the experimental accuracy secured.

The compositions of the solutions and the experimental values of log γ_{1} for the HCl -choline chloride and HCl -acetylcholine chloride systems are given respectively in Tables IV and V, which also show the closeness of fit obtained when the values of $\log \gamma_{1}$ at each total tonic strength are fitted to the eq

Table IV. Activity Coefficients of Hydrochloric Acid in the System $\mathrm{HCl}-\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ at All of the Four Different Temperatures ${ }^{a}$

m	y_{2}	$5^{\circ} \mathrm{C}$			$15^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$35^{\circ} \mathrm{C}$		
		$\gamma_{\text {HCl }}$	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	$\gamma_{\text {HCl }}$	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	$\gamma^{\text {HCl }}$	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	γ^{HCl}	$10^{4} \Delta_{1}$	$10^{4} \Delta_{3}$
3.0	0.10067	1.2647	14	0	1.2242	10	0	1.1875	20	0	1.1403	15	0
	0.28316	1.0019	-25	0	0.9839	-19	0	0.9654	-36	0	0.9422	-28	0
	0.49976	0.7743	11	0	0.7700	9	0	0.7762	17	0	0.7671	13	0
2.0	0.10063	0.9985	23	-2	0.9767	40	3	0.9513	38	1	0.9173	10	0
	0.28873	0.8641	-18	6	0.8391	-44	-8	0.8240	-39	-3	0.8100	-15	0
	0.49984	0.7404	-36	-5	0.7254	-30	8	0.7159	-35	3			
	0.69854	0.6505	26	2	0.6401	34	-3	0.6370	36	-1	0.6281	5	0
1.0	0.10065	0.8063	3	1	0.7949	1	0	0.7838	3	1	0.7720	6	-1
	0.49983	0.6950	-8	-3	0.6931	-2	-1	0.6883	-9	-5	0.6852	-7	4
	0.69973	0.6475	3	5	0.6476	0	1	0.6480	5	7	0.6459	-11	-6
	0.88026	0.6059	2	-2	0.6089	1	0	0.6113	1	-3	0.6161	12	2
0.5	0.10042	0.7638	19	-13	0.7549	2	-8	0.7465	-2	-12	0.7387	1	-11
	0.29548	0.7333	15	32	0.7280	7	12	0.7237	15	20	0.7165	12	18
	0.50058	0.6921	-53	-20	0.6993	3	14	0.6951	0	10	0.6899	-3	9
	0.70180	0.6693	-19	-5	0.6666	-37	-33	0.6645	-39	-35	0.6617	-37	-32
	0.88110	0.6536	38	6	0.6535	25	15	0.6532	26	17	0.6517	27	15
0.25	0.10028	0.7676	13	-6	0.7630	11	-5	0.7575	8	-7	0.7503	3	-13
	0.29628	0.7524	2	12	0.7492	4	13	0.7463	7	16	0.7432	19	27
	0.50664	0.7339	-24	-5	0.7315	-24	-7	0.7298	-21	-5	0.7255	-24	-8
	0.69808	0.7230	-15	-7	0.7220	-11	-4	0.7201	-17	-10	0.7161	-24	-18
	0.87848	0.7179	24	4	0.7164	20	3	0.7167	22	6	0.7158	27	11
0.1	0.10080	0.7980	-5	0	0.7959	-6	-1	0.7929	-4	-1	0.7879	-9	-1
	0.49390	0.7839	7	-1	0.7841	12	3	0.7824	13	7	0.7806	18	5
	0.70260	0.7751	6	2	0.7741	0	-4	0.7715	-8	-10	0.7709	-1	-6
	0.88190	0.7654	-8	-1	0.7665	-6	2	0.7668	0	4	0.7642	-8	3

${ }^{a} \Delta_{1,2}=\log$ (experimental activity coefficient) $-\log$ (value calculated by least-squares fit to eq 1), Δ_{1} with $\beta_{12}=0, \Delta_{2}$ with $\beta_{12} \neq 0$.

Table V. Activity Coefficients of Hydrochloric Acid in the System $\mathrm{HCl}-\mathrm{CH}_{2}\left(\mathrm{OCOCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}_{-} \mathrm{H}_{2} \mathrm{O}$ at All of the Four Different Temperatures ${ }^{a}$

m	y_{2}	$5^{\circ} \mathrm{C}$			$15^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$35^{\circ} \mathrm{C}$		
		γ_{HCl}	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	γ_{HCl}	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	γ_{HCl}	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$	$\boldsymbol{\gamma}_{\text {HCl }}$	$10^{4} \Delta_{1}$	$10^{4} \Delta_{2}$
3.0	0.09993	1.2979	-3	0	1.2622	7	0	1.2162	7	0	1.1675	15	0
	0.30016	1.0757	5	0	1.0573	-13	0	1.0297	-13	0	0.9904	-30	0
	0.50070	0.8879	-3	0	0.8936	7	0	0.8795	7	0	0.8575	15	0
2.0	0.09970	1.0080	-4	0	0.9847	0	0	0.9590	-1	0	0.9318	8	0
	0.29986	0.8997	6	0	0.8825	0	0	0.8652	1	0	0.8413	-12	0
	0.69806	0.7128	-2	0	0.7095	0	0	0.7039	0	0	0.6954	4	0
1.0	0.0	0.8369	1	4	0.8238	2	5	0.8099	2	6	0.7950	2	-3
	0.09989	0.8127	-3	-2	0.8011	-3	-3	0.7890	-3	-2	0.7770	1	0
	0.29995	0.7675	-3	-5	0.7588	-7	-9	0.7494	-9	-12	0.7432	5	10
	0.50054	0.7252	1	-2	0.7213	5	2	0.7146	3	-1	0.7066	-16	-10
	0.69798	0.6871	12	11	0.6852	11	10	0.6824	18	17	0.6781	0	2
	0.90374	0.6448	-8	-5	0.6455	-9	-6	0.6435	-13	-9	0.6480	6	1
0.5	0.0	0.7741	2	4	0.7664	0	6	0.7574	-2	5	0.7467	-10	-2
	0.09986	0.7612	-7	-7	0.7547	-8	-7	0.7470	-7	-6	0.7398	1	3
	0.30008	0.7412	5	3	0.7364	4	-1	0.7306	6	-1	0.7233	6	-2
	0.49868	0.7194	2	0	0.7179	11	4	0.7133	11	3	0.7072	10	0
	0.90476	0.6773	-2	0	0.6764	-7	-1	0.6749	-7	-1	0.6714	-8	0
0.25	0.0	0.7718	5	2	0.7673	6	2	0.7615	4	3	0.7552	8	5
	0.09988	0.7665	0	0	0.7624	0	-1	0.7567	-4	-5	0.7450	-5	-6
	0.30056	0.7559	-8	-6	0.7537	-7	-3	0.7511	0	2	0.7443	-5	-3
	0.49928	0.7485	0	3	0.7474	0	4	0.7446	-1	1	0.7393	-1	1
	0.70208	0.7399	2	3	0.7395	-2	-1	0.7382	-1	0	0.7344	4	5
	0.89964	0.7310	1	-2	0.7334	4	0	0.7325	2	0	0.7284	0	-3
0.1	0.0	0.8042	6	2	0.8023	8	4	0.7981	5	4	0.7931	3	3
	0.10000	0.8004	-6	-4	0.7978	-10	-8	0.7948	-8	-7	0.7910	-5	-5
	0.29940	0.7981	-2	3	0.7975	0	5	0.7946	3	5	0.7912	3	3
	0.50060	0.7956	2	-1	0.7956	2	-2	0.7918	0	-1	0.7890	-1	-1

${ }^{a} \Delta_{1,2}=\log$ (experimental activity coefficient) $-\log$ (value calculated by least-squares fit to eq 1), Δ_{1} with $\beta_{12}=0, \Delta_{2}$ with $\beta_{12} \neq 0$.

1 by the method of least squares, the case where $\beta_{12}=0$ being considered first. There is an improvement in fit when the term in $m_{2}{ }^{2}$ is included, and such a term is possibly warranted at the higher ionic strengths, but Harned's rule is a good approximation, as can be gauged from the Δ_{1} values in Tables IV and V. Tables VI and VII give respectively the results of the above fit, for the two systems considered.

Analysts of the Resufts by the Scatchard Method. In order to be able to calculate the $b_{A B}$ coefficients characteristic of the
mixture, one must know the values of the α_{J} parameters for the two components of the mixture (α_{1}, α_{2}) at each constant total lonic strength. To obtain α_{1}, for example, the values of γ_{1} (pure first component activity coefficients) must first be fitted (least squares) to an extended Debye-Hückel equation of the type

$$
\begin{array}{r}
2.3026 \nu_{J} m_{J} / I_{J} \log \gamma_{1}=-2 S I^{1 / 2} /\left(1+a_{J} I^{1 / 2}\right)+2 a_{J}(1) I+ \\
3 / 2 a_{J}^{(2)} I^{2}+4 / 3 a_{J}^{(3)} I^{3}+5 / 4 a_{J}^{(4)} I^{4}+\ldots(12)
\end{array}
$$

Table VI. Parameters of Eq 1 Obtained by the Method of Least Squares for the System $\mathrm{HCl}-\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ at All of the Four Different Temperatures

m	$5^{\circ} \mathrm{C}$			$15^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$35^{\circ} \mathrm{C}$		
	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$	α_{12}	$-\beta_{12}$	$\underline{\log \gamma_{1}{ }^{\circ}}$	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$
3.0	0.1778	$0.0{ }^{\text {a }}$	0.1543	0.1681	$0.0^{\text {a }}$	1.1376	0.1540	$0.0{ }^{\text {a }}$	0.1192	0.1436	$0.0{ }^{\text {a }}$	0.0989
	0.1970	0.0105	0.1605	0.1826	0.0080	0.1423	0.1820	0.0154	0.1282	0.1648	0.0116	0.1057
2.0	0.1559	$0.0{ }^{\text {a }}$	0.0285	0.1529	$0.0{ }^{\text {a }}$	0.0165	0.1455	$0.0^{\text {a }}$	0.0038	0.1371	$0.0{ }^{\text {a }}$	-0.0109
	0.1812	0.0158	0.0354	0.1909	0.0237	0.0269	0.1831	0.0235	0.0141	0.1495	0.0075	-0.0077
1.0	0.1590	$0.0{ }^{\text {a }}$	-0.0778	0.1484	$0.0{ }^{\text {a }}$	-0.0848	0.1382	$0.0{ }^{\text {a }}$	-0.0922	0.1265	$0.0{ }^{\text {a }}$	-0.1002
	0.1635	0.0048	-0.0772	0.1498	0.0014	-0.0846	0.1428	0.0049	-0.0916	0.1390	0.0131	-0.0984
0.5	0.1783	$0.0{ }^{\text {a }}$	-0.1099	0.1665	$0.0^{\text {a }}$	-0.1140	0.1558	$0.0^{\text {a }}$	-0.1189	0.1460	$0.0{ }^{\text {a }}$	-0.1244
	0.2609	0.1683	-0.1030	0.1941	0.0562	-0.1117	0.1801	0.0495	-0.1169	0.1776	0.0644	-0.1217
0.25	0.1548	$0.0{ }^{\text {a }}$	-0.1123	0.1453	$0.0{ }^{\text {a }}$	-0.1150	0.1305	0.0°	-0.1182	0.1171	$0.0{ }^{\text {a }}$	-0.1221
	0.2547	0.4090	-0.1082	0.2335	0.3611	-0.1113	0.2117	0.3326	-0.1148	0.1988	0.3343	-0.1188
0.1	0.2279	$0.0{ }^{\text {a }}$	-0.0952	0.2094	0.0°	-0.0965	0.1914	$0.0{ }^{\text {a }}$	-0.0984	0.1707	$0.0^{\text {a }}$	-0.1009
	0.1339	-0.9841	-0.0966	0.1164	-0.9728	-0.0978	0.1335	-0.6057	-0.0993	0.0291	-1.4823	-0.1030

${ }^{a}$ Set equal to zero.

Table VII. Parameters of Eq 1 Obtained by the Method of Least Squares for the System $\mathrm{HCl}-\mathrm{CH}_{2}\left(\mathrm{OCOCH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}_{-1} \mathrm{H}_{2} \mathrm{O}$ at All of the Four Different Temperatures

m	$5^{\circ} \mathrm{C}$			$15^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$35^{\circ} \mathrm{C}$		
	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{\circ}$	α_{12}	$-\beta_{12}$	$\log \gamma_{1}{ }^{0}$
3.0	0.1371	$0.0^{\text {a }}$	0.1546	0.1248	$0.0^{\text {a }}$	0.1379	0.1171	$0.0{ }^{\text {a }}$	0.1195	0.1115	$0.0^{\text {a }}$	0.0992
	0.1331	-0.0023	0.1533	0.1347	0.0055	0.1410	0.1269	0.0054	0.1226	0.1339	0.0125	0.1063
2.0	0.1259	$0.0{ }^{\text {a }}$	0.0290	0.1189	$0.0^{\text {a }}$	0.0170	0.1122	$0.0{ }^{\text {a }}$	0.0043	0.1059	$0.0{ }^{\text {a }}$	-0.0104
	0.1210	-0.0030	0.0277	0.1187	-0.0001	0.0170	0.1111	-0.0007	0.0040	0.1155	0.0058	-0.0079
1.0	0.1243	$0.0{ }^{\text {a }}$	-0.0774	0.1159	$0.0^{\text {a }}$	-0.0844	0.1088	$0.0{ }^{\text {a }}$	-0.0918	0.0988	$0.0^{\text {a }}$	-0.0998
	0.1216	-0.0030	-0.0777	0.1131	-0.0031	-0.0847	0.1053	-0.0040	-0.0922	0.1033	0.0052	-0.0994
0.5	0.1274	$0.0^{\text {a }}$	-0.1114	0.1186	$0.0{ }^{\text {a }}$	-0.1155	0.1096	$0.0{ }^{\text {a }}$	-0.1205	0.1026	$0.0{ }^{\text {a }}$	-0.1259
	0.1240	-0.0073	-0.1116	0.1071	-0.0253	-0.1161	0.0969	-0.0279	-0.1211	0.0870	-0.0341	-0.1267
0.25	0.1032	$0.0{ }^{\text {a }}$	-0.1130	0.0866	$0.0^{\text {a }}$	-0.1156	0.0736	$0.0{ }^{\text {a }}$	-0.1188	0.0663	$0.0^{\text {a }}$	-0.1228
	0.1133	0.0454	-0.1127	0.1023	0.0711	-0.1152	0.0797	0.0274	-0.1186	0.0767	0.0469	-0.1225
0.1	0.0865	$0.0{ }^{\text {a }}$	-0.0952	0.0614	$0.0^{\text {a }}$	-0.0964	0.0588	$0.0^{\text {a }}$	-0.0984	0.0380	$0.0^{\text {a }}$	-0.1009
	0.1508	1.2763	-0.0949	0.1356	1.4712	-0.0961	0.0790	0.4001	-0.0983	0.0386	0.0118	-0.1009

${ }^{a}$ Set equal to zero.

Table VIIL. Best-Fitting Parameters of Eq 12 for $\mathbf{H C l}$ and $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ at $25^{\circ} \mathrm{C}$

	HCl	$\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$
$a_{\mathrm{J}}{ }^{2} a_{\mathrm{J}}{ }^{(1)}$	1.46507	0.68452
$10^{3} a_{\mathrm{J}}{ }^{(2)}$	25.2029	4.63274
$10^{4} a_{\mathrm{J}}{ }^{(3)}$	15.797	9.2316
$10^{5} a_{\mathrm{J}}{ }^{(4)}$	-5.6465	-0.941644
	-7.66763	-0.85794

S is the value of the limiting Debye-Hückel slope for the appropriate experimental temperature, and a_{j} is the "distance of closest approach" parameter. Such fits have already been made by Downes (17) for hydrochloric acid and by Bates (22) for chollne chloride, both at $25^{\circ} \mathrm{C}$. We have used their values of the parameters a_{J} and $a_{\mathrm{J}}{ }^{(1)}$, which are listed in Table VIII.

Knowing the best fitting values of a_{J} and $a_{\mathrm{J}}{ }^{(1)}$, one can calculate α_{J} by using the following relation which is thermodynamically related to eq 12:

$$
\begin{align*}
& \alpha_{J}= \\
& \frac{-2 S}{a_{J}{ }^{3}}\left[1+a_{J} I^{1 / 2}-\frac{1}{1+a_{J} I^{1 / 2}}-2 \ln \left(1+a_{J} I^{1 / 2}\right)\right]+ \\
& a_{J}^{(1)} I+a_{J}^{(2)} I^{2}+a_{J}^{(3)} I^{3}+a_{J}{ }^{(4)} I^{4}+\ldots(1 \tag{13}
\end{align*}
$$

Having obtained the parameters for the single-electrolyte solutions, we first evaluated the values of $B_{A B}{ }^{(0)}$ and $\beta_{A B}{ }^{(0)}$ at a particular lonic strength by subjecting eq 4 , after neglecting $B_{A B}{ }^{(1)}$ and $\beta_{A B}{ }^{(1)}$ terms, to the method of least squares. These values of elther $B_{A B}{ }^{(0)}$ or $\beta_{A B}{ }^{(0)}$, obtained at different total ionic

Table IX. Values of $b_{A B}$ Coefficients Obtained by Least-Squares Fit of Eq 4 (Written in Terms of b_{AB} Coefficients) to the Measured Activity Coefficients of Hydrochloric Acid for the System $\mathrm{HCl}-\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}-\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$

$b_{\mathrm{AB}}\left({ }^{(0,1)}\right.$	-0.16567
$b_{\mathrm{AB}}^{(0,2)}$	-0.11475
$b_{\mathrm{AB}}^{(0,3)}$	0.01051
$b_{\mathrm{AB}}^{(1,2)}$	0.0^{a}
$b_{\mathrm{AB}}{ }^{(, 3)}$	0.0^{a}

${ }^{a}$ Set equal to zero.
strengths, were then subjected to the least-squares analysis of eq 5 for calculating the $b_{A B}$ parameters, which are listed in Table IX.
The magnitude of the $\Delta_{3}{ }^{(8)}$ values Histed in Table X shows the success with which eq 4 with $B_{A B}{ }^{(1)}$ and $\beta_{A B}{ }^{(1)}$ set equal to zero can be applied for reproducing the experimental results (γ_{Hcc}). The activity coefficients of choline chioride in the mixtures can be obtained from the analogous equation (eq 7) for $\gamma_{\text {chal }}$ by using the same $b_{A B}$ values; these are also listed in Table X. (Since the actual experimental values are not known, the deviation functions cannot be given (like $\Delta_{3}^{(S)}$ and $\Delta_{4}^{(P)}$ for the first component.)

Analysk of the Results by the Phzer Method. For the analysis of our results according to Pitzer's treatment of mixed electrolyte solutions, we make use of the equations given earlier (with $\theta_{M N}^{\prime}=0$). Pitzer and Mayorga (27) have given the following values for the parameters for HCl and ChCl at $25^{\circ} \mathrm{C}$, which we use in our calculation: $\beta_{\mathrm{HC}}{ }^{(0)}=0.1775 ; \beta_{\mathrm{HC}}{ }^{(1)}=$ $0.2945 ; C_{\mathrm{HCl}^{\phi}}=0.0008 ; \beta_{\text {ChCl }^{(0)}}=0.0457 ; \beta_{\mathrm{CnCl}^{(1)}}=-0.196$; $C_{\text {Cncl }}{ }^{\phi}=0.0008$.

Table X. Activity Coefficients of Choline Chloride Calculated by Using Scatchard and Pitzer Equations, and the Deviations of the Calculated Values of $\log \gamma_{\mathrm{HCl}}$ from the Corresponding Experimental $\log \gamma_{\mathrm{HCl}}$ Values at $25^{\circ} \mathrm{C}^{a}$

$m, \mathrm{~mol} \mathrm{~kg}^{-1}$	y_{1}	$-\log \boldsymbol{\gamma}_{2}{ }^{(S)}$	$-\log \gamma_{2}{ }^{(P)}$	$10^{4} \Delta_{3}{ }^{(S)}$	$10^{4} \Delta_{4}{ }^{(P)}$	$\sigma^{(S)}$	$\sigma^{(\mathrm{P})}$
3.0	0.89966	0.3317	0.3084	11	55	0.0109	0.0043
	0.71733	0.3382	0.2938	-95	1		
	0.50064	0.3398	0.2875	-163	-52		
2.0	0.89931	0.2977	0.2743	37	41	0.0104	0.0126
	0.71230	0.3061	0.3061	-67	-65		
	0.50073	0.3125	0.2807	-127	-143		
	0.30129	0.3153	0.2906	-146	-194		
1.0	0.89950	0.2503	0.2333	2	-1	0.0045	0.0076
	0.50071	0.2652	0.2508	-32	-53		
	0.30179	0.2714	0.2612	-42	-76		
	0.11810	0.2763	0.2718	-75	-123		
0.5	0.89760	0.2073	0.1958	10	11	0.0036	0.0036
	0.68766	0.2134	0.2037	15	15		
	0.50146	0.2187	0.2109	-16	-16		
	0.30268	0.2240	0.2190	-73	-73		
	0.11820	0.2288	0.2267	-26	-27		
0.25	0.89636	0.1671	0.1598	26	27	0.0048	0.0057
	0.68948	0.1712	0.1653	38	43		
	0.50756	0.1748	0.1703	23	32		
	0.30108	0.1787	0.1760	39	50		
	0.11784	0.1822	0.1811	88	102		
0.1	0.90100	0.1207	0.1171	0	2	0.0008	0.0011
	0.49480	0.1250	0.1230	14	20		
	0.30300	0.1271	0.1258	-9	8		
	0.11830	0.1290	0.1285	-3	0		

${ }^{a} \Delta_{3}=\log$ (experimental activity coefficient) $-\log$ (value calculated by least-squares fit to eq 4 , with $B_{A B}{ }^{(1)}$ and $\beta_{A B}{ }^{(1)}$ set equal to zero). $\Delta_{4}=\log$ (experimental activity coefficient) $-\log$ (value calculated by least-squares fit to eq 10).

Assuming that eq 10 would reproduce correctly (for a proper choice of the θ and ψ values) the experimentally determined $\gamma_{M X}$ values (calculated from the measured cell emf's by means of the usual equation: In $\gamma_{M X}=\left[E^{\circ}-E-(R T / F)\right.$ in $m_{1}\left(m_{1}\right.$ $\left.\left.+m_{2}\right)\right] /(2 R T / F)$, using the tabulated E° values (Table I)), one obtains

$$
\begin{align*}
\Delta \ln \gamma_{M X} & =\ln \gamma_{M X}(\text { exptl })-\ln \gamma_{M X}(\text { theor, } \theta=\psi=0) \\
& =m_{2}\left[\theta_{M N}+1 / 2\left(m+m_{1}\right) \psi_{\mathrm{MNX}}\right] \tag{14}
\end{align*}
$$

The values of the binary and ternary interaction coefficients θ and ψ were calculated by the computerized least-squares handling of eq 14, using the experimental activity-coefficient values of hydrochloric acid in $\mathrm{HCl}-\mathrm{CH}_{2}\left(\mathrm{OH}_{3} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}\right.$ mixtures at $25^{\circ} \mathrm{C}$ only. (Since the values of the pure-electrolyte parameters at the other experimental temperatures are not so far available in the literature, the analysis is restricted to this temperature only.) These values, together with that of the standard deviation σ of the fit, are $\theta=-0.0520, \psi=-0.0644$, and $\sigma=0.032$.

The rather large values of the standard deviation in comparison with the values of the Pitzer parameters might appear to raise some doubt regarding the meaningfulness of the latter. An actual piot of this fit shows that, though the overall standard deviation σ is indeed somewhat iarge, this can be attributed mostly to the sets of lower total molality data which show the largest scatter, very likely because of the somewhat lower experimental accuracy attained there. A very similar situation was noted earlier by us (19) for the HCl -quaternary ammonium chioride mixtures and by Roy et al. (28) for the $\mathrm{HBr}-\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4} \mathrm{NBr}$ mixtures. The conclusion to be drawn would be that the Pitzer coefficients are significant, but that the unambiguous experimental establishment of their values would require exceptionally accurate data in the lower moiality range.

The magnitude of the $\Delta_{4}{ }^{(P)}$ values listed in Table X shows the success of the Pitzer equation (eq 10) for reproducing the activity coefficients of hydrochloric acid. Also given in the same table are the activity coefficients of choline chlorlde, calculated
by using the Pitzer equation (an equation analogous to eq 10, for $\gamma_{\text {chal }}$) and the same values of interaction parameters θ and ψ.

The standard deviations of the fits of the log $\gamma_{\text {Hel }}$ values in Scatchard's and Pitzer's analyses are also given in Table X ($\sigma^{(\mathbf{s})}$ and $\sigma^{(P)}$, respectively).

Comparlson of Scatchard and Phzer Equations. It is seen from Table X for the $\mathrm{HCl}-\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ system at 25 ${ }^{\circ} \mathrm{C}$ that $\sigma^{(\mathrm{S})}$ is less than $\sigma^{(P)}$ for the total molalities $m=2,1$, 0.25 , and 0.1 , while, for $m=3.0, \sigma^{(\mathbb{P})}$ is less than $\sigma^{(8)}$, and, for $m=0.5, \sigma^{(\mathrm{S})}=\sigma^{(\mathrm{P})}$.

Scatchard's equation as used here contains three interaction parameters whose physical meaning is somewhat vague. On the other hand, Pitzer's equations have effectively only two parameters (e.g., θ and ψ) which characterize specific types of ionic interactions in the mixtures and should on this count be preferable to the Scatchard equations. However, for the $\mathrm{HCl}-\mathrm{CH}_{2}\left(\mathrm{OH}_{3} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}\right.$ mixture, Pitzer's equation is found not to be quite as successful as Scatchard's.

Llterature Ched

(1) Bronsted, J. N. Kgl. Dan. Vidensk, Selsk., Mat. Fys. Modd. $1921,4$.
(2) Bronsted, J. N. J. Am. Chem. Soc. 1922, 44, 877; 1923, 45, 2898.
(3) Guggenhelm, E. A. Philos. Mag. 1935, 19, 588.
(4) Guggenheim, E. A.; Turgeon, J. C. Trans. Faraday Soc. 1955, 51, 747.
(5) Guggenhelm, E. A. "Application of Statistical Mechanics"; Clarendon Press: Oxford, 1986; pp 186-70.
(6) Scatchard, G. Chem. Rev. 1936, 19, 309.
(7) Scatchard, G. In "The Structure of Electrolytic Solutions"; Hamer, W. J., Ed.; Wlley: New York, 1959; p 9.
(8) Pitzer, K. S.; Brewer, L. In "Thermodynamics", 2nd. ed.; Lewis, G. N., Randal, M., Eds.; Kogakusha Co. Ltd.: Tokyo, 1961; p 569.
(9) Harned, H. S.; Owen, B. B. "The Physical Chemstry of Electrolyte Harned, H .' S.; Owen, B. B. "The Physical Chemistry of Ele
(10) McKay, H. A. Trans. Faraday Soc. 1955, 51, 903.
(11) Harned, H. S. J. Phys. Chem. 1954, 63, 1299; 1980, 64, 112; 1963, 67, 1739.
(12) Harned, H. S.; Robinson, R. A. "Multicomponent Electrolyte Solutions"; Pergamon: Oxford, 1988; p 438.
(13) Scatchard, G. J. Am. Chem. Soc. 1981, 83, 2636.
(14) Scatchard, G. J. Am. Chem. Soc. 1988, 90, 3124.
(15) Lletzke, M. H. J. Phys. Chem. 1985, 69, 2395; 1988, 257, 72, 4408.
(16) Rush, R. M.; Johnson, J. S. J. Phys. Chem. 1988, 72, 767.
(17) Downes, C., J. J. Chem. Soc., Faraday Trans. 1972, 68, 1964.
(18) Pitzer, K. S. J. Phys. Chem. 1973, 77, 268.
(19) Mahapatra, P.; Sengupta, M. J. Chem. Eng. Data 1978, 23, 381.
(20) Boyd, G. E.; Schwarz, A.; Lindenbaum, S. J. Phys. Chem. 1966, 70, 821.
(21) Baum, G. Anal. Lett. 1970, 3, 105.
(22) Macaskill, J. B.; Mohan, M. S.; Bates, R. G. Anal. Chem. 1977, 49, 209.
(23) Renshaw, R. R. J. Am. Chem. Soc. 1910, 32, 128.
(24) Jones, L. W.; Major, R. T. J. Am. Chem. Soc. 1930, 52, 307.
(25) Jves, D. J. G.; Janz, G. J. "Reference Electrodes"; Academic Press: New York, 1981; p 209.
(28) Bates, R. G.; Guggenhelm, E. A.; Harned, H. S.; Ives, D. J. G.; Janz, G. J.; Monk, C. B.; Prue, J. E.; Robinson, R. A.; Stokes, R. H.; WyneJones, W. F. K. J. Chem. Phys. 1056, 25, 361.
(27) Pitzer, K. S.; Mayorga, G. J. Phys. Chem. 1073, 77, 2300.
(28) Roy, R. N.; Glbbons, J. J.; Snelling, R.; Moeller, J.; White, T. J. Phys. Chem. 1977, 81, 391.

Binary Vapor-Liquid Equillbria of Iso Alcohol-Tetrachloroethene Systems

A. Raviprasad, K. Venkateswara Rao,* and C. Chiranjlvi
Department of Chemical Engineering, Andhra University, Waltair-530003, India

Vapor-llquid equilibrium data for two binary iso

 alcohol-tefrachloroethene systems are measured at $\mathbf{7 6 0}$ mmHg pressure. these two systems are nonideal in behavlor and show positive deviations from Raoult's law. The data are correlated by the Margules, Van Laar, WIlson, NRTL, and UNIQUAC equations.In order to develop predictive methods for vapor-liquid equilibria, a continuing study on various binary systems is in progress at this laboratory. As part of this, two binary systems comprising either 2-methyl-1-propanol or 3-methyl-1-butanol in a common solvent, tetrachloroethene, were studied at $760 \pm$ 1 mmHg pressure.

Experimental Section

Purtly of Chemicals. The iso alcohols and tetrachloroethene were of reagent grade and were further purified in a laborato-ry-packed distillation column. The physical properties of these chemicals are presented in Table I. These values compare well with the literature values (16).

Equilibrlum StM and Analytical Method. An equillbrium still of Jones, Schoenborn, and Colburn as modified by Ward (15) was used for the determination of the vapor-liquid equilibria. The details of the still and its operation were described elsewhere (11). Equilibrium in the still was attained in $45-60 \mathrm{~min}$ depending on the temperature range of the binary mixture. Equilibrium was assumed to be attained when the boiling temperature was constant. In all of the runs, the still was allowed to operate for an additional 60-90 min after getting the equilibrium temperature to ensure complete attainment of equilibrium.
The equilibrium vapor and liquid samples were analyzed by refractive index. For this purpose, mixtures of known composition were prepared at intervals of $\sim 10 \mathrm{~mol} \%$, and their refractive indexes were measured. The refractive index vs. composition data for the two binary mixtures are given in Table II. A standard calibration chart of the refractive index vs. composition was prepared for each system on $75 \times 50 \mathrm{~cm}$ graph paper. Refractive-index measurements were taken at $30^{\circ} \mathrm{C}$ for sodium light by using an Abbe's precision refractometer which gave direct readings to three significant figures and had an accuracy to the nearst 0.0005 . This corresponds to a maximum error of 0.0055 mole fraction. The equllibrium temperature was measured by a standard mercury in glass thermometer having an accuracy of $0.1^{\circ} \mathrm{C}$.

Table I. Physical Properties of Chemicals

compd	normal bp, ${ }^{\circ} \mathrm{C}$		refractive index at $30^{\circ} \mathrm{C}$	
	exptl	lit. ${ }^{13}$	exptl	lit. ${ }^{13}$
2-methyl-1-propanol	107.9	107.89	1.3920	1.39163
3-methyl-1-butanol	131.7	132.0	1.4035	1.40284
tetrachloroethene	121.3	121.20	1.5019	1.5018

Table II. Refractive Index vs. Composition Data
2-Methyl-1-propanol (1)-Tetrachloroethene (2)

mole fraction of 2-methyl- 1-propanol	refractive index	mole fraction of 2-methyl 1-propanol	refractive index
0.0000	1.5019	0.6261	1.4339
0.1071	1.4889	0.7000	1.4230
0.2191	1.4769	0.8000	1.4129
0.3252	1.4662	0.9000	1.4025
0.4305	1.4540	1.0000	1.3920
0.5259	1.4442		

Tetrachloroethene (1)-3-Methyl-1-butanol (2)

mole fraction of tetrachloro- ethene	refractive index	mole fraction of tetrachloro- ethene	refractive index
0.0000	1.4035	0.6142	1.4619
0.1062	1.4142	0.7055	1.4710
0.2096	1.4232	0.7854	1.4810
0.3130	1.4327	0.9131	1.4913
0.4130	1.4424	1.0000	1.5019
0.5111	1.4519		

Table III. Antoine Constants and Constants for Molar Volumes

con- stant	2-methyl-1- propanol	3-methyl-1- butanol	tetrachloro- ethene
A	8.53516	7.38170	7.62930
B	1950.940	1373.780	1803.96
C	237.147	174.333	258.976
a	90.56	106.92	85.75
b	0.07237	0.1006	0.0853
c	0.409×10^{-3}	0.0	0.889×10^{-4}

Results and Discussion

The liquid-phase activity coefficient of a component in a highly nonideal mixture is related to the llquid- and vapor-phase mole fractions of the component at equilibrium conditions as follows:

$$
\begin{equation*}
\gamma_{1}=\frac{\phi_{l} \pi y_{l}}{x_{1} \phi_{1}{ }^{3} P_{i}^{0} \exp \left[\bar{V}_{i}^{L}\left(\pi-P_{i}^{0}\right) /(R T)\right]} \tag{1}
\end{equation*}
$$

